

### INTRODUCTION

- By the fall of 1953, the working hypothesis was adopted that the chromosomal DNA functions as template for RNA molecule.
- The RNA molecule subsequently moves to the cytoplasm, where they determine the arrangement of amino acid within the proteins.
  - In 1956, F. Crick referred to this pathway as central dogma. This pathway is:

Duplication DNA Transcription RNA Translation Protein

## TRANSCRIPTION

- It is the synthesis of an RNA molecule from a DNA template.
- All cellular RNAs are synthesized from the DNA templates through this process.
- DNA regions that can be transcribed into RNA are called structural genes.
- The template strand is the strand from which the RNA is actually transcribed. It is also termed as antisense strand.
- The coding strand is the also called as sense strand.
  - Only the template strand is used for the transcription, but the coding strand is not.
- only a small portion of DNA is transcribed in response to the development requirement, physiological need and environmental changes.

# Similarity between replication and transcription

- Both processes use DNA as the template.
- Phosphodiester bonds are formed in both cases.
- Both synthesis directions are from 5' to 3'.

# Differences between replication and transcription

Replication

A-T, G-C

|           | Replication    | Hallscription  |
|-----------|----------------|----------------|
| template  | double strands | single strand  |
| substrate | dNTP           | NTP            |
| primer    | yes            | no             |
| Enzyme    | DNA polymerase | RNA polymerase |
| product   | dsDNA          | ssRNA          |
|           |                |                |

Transcription

A-U, G-C

# RNA POLYMERASE

- An enzyme that catalyzes RNA synthesis.
- It does not need a primer, rather it can initiate transcription de novo.
- It performs the same reaction in all cells, from bacteria to humans.
- Bacteria have only a single RNA polymerase.
- Eukaryotes have 3 RNA polymerases i.e. RNA Pol I, II & III.
- Pol II is the most studied of these enzymes, and is responsible for transcribing all protein-encoding genes.
- Pol I & Pol III are responsible for transcribing specialized, Rnaencoding genes.
- The shape of RNA Polymerase resembles a crab claw.

## STEPS OF TRANSCRIPTION

Transcription by RNA Polymerase proceeds through a series of well-defined steps which are grouped into 3 phases:

- Initiation
- Elongation &
- Termination



- Transcription in eukaryotes is undertaken by different RNA polymerases.
- Eukaryotes have 3 polymerases: Pol I, II & III.
- Several initiation factors are required for efficient & promoter-specific initiation in eukaryotes, and are called as general transcription factors (GTFs).
- In vitro, the GTFs is required, together with Pol II, to initiate transcription on a DNA template.
- Sometimes the GTFs are not sufficient to promote significant expression. Rather, the additional factors are required such as mediator complex, DNA binding regulatory proteins and chromatin modifying enzymes.

#### **CORE PROMOTER:**

- It refers to the minimal set of sequence elements required for accurate transcription initiation by Pol II.
- A core promoter is about 40 nucleotides long, extending either upstream or downstream of the transcription start site.
- Relative to the transcription start site, there are 4 elements found in Pol II core promoter.
- These are the TFIIB recognition element (BRE), the TATA element, the initiator (Inr) & the downstream promoter elements (DPE).
- Promoter includes only 2 or 3 of these 4 elements.

# PRE INITIATION COMPLEX FORMATION

- The GTFs help polymerase bind to the promoter and melt DNA.
- The complete set of GTFs & polymerase bound together at the promoter and poised for initiation, is called as pre-initiation complex.
- Many Pol II promoters contains TATA elements, where preinitiation complex formation begins.
- The TATA elements recognized by GTFs called TFIID.
- The components of TFIID that binds to the TATA DNA sequence is called TBP.
- The other subunit is TAFs that control the DNA binding activity of TBP.

- The resulting TBP-DNA complex provide a platform for attachment of other GTFs & polymerase.
- The factors TFIIA & TFIIB bind to this complex.
- After that TFIIF together with polymerase also bind to the complex.
- At last, the two factors TFHE & TFHH bind to upstream of Pol. II resulting in the formation of pre-initiation complex.
- Formation of this complex containing these all components is followed by promoter melting.
- Promoter melting in eukaryotes requires hydrolysis of ATP and is mediated by TFIIH.
- The large subunit of Pol. II has a C-terminal domain (CTD), which extends as a 'tail'.
- The CTD contains a series of repeats of heptapeptide sequence: Tyr-Ser-Pro-Thr-Ser-Pro-Ser.



# **ELONGATION**

- Once polymerase has initiated transcription, it shifts into the elongation phase.
- Elongation requires another set of factors, such as TFIIS & hSPT5, known as elongation factors.
- This factors stimulate elongation and also required for RNA processing.
- These factors also favor the phosphorylated form of CTD. The phosphorylation of CTD leads to an exchange of initiation factors with elongation factors.
- · Various proteins are thought to stimulate elongation by Pol II.
- The protein P-TEFb stimulates elongation in 3 separate steps.
- This protein bound to Pol II and phosphorylates the serine residue at position 2 of the CTD repeats

- This P-TEFb also activates another protein, called hSPT5 which is an elongation factor.
- At last, this P-TEFb activates one another elongation factor called TAT-SF1.



# POLYADENYLATION & TERMINATION

- Once the elongation is completed, it proceeds through the RNA processing events i.e. polyadenylation and termination.
- Polyadenylation occurs at the 3' end of the mRNA which is linked with the termination of transcription.
- The polymerase CTD tail is involved in recruiting the enzymes necessary for polyadenylation.
- Two protein complexes are carried by the CTD of polymerase called, CPSf (cleavage & polyadenylation specificity factor) & CstF (cleavage stimulation factor).
- The sequences which one transcribed into RNA, trigger transfer of these factors to the RNA, are called poly-A signals.
- Once CPSF & CstF bound to the RNA, it results in RNA cleavage and then polyadenylation.

- After cleavage of RNA, polyadenylation is mediated by an enzyme called poly-A polymerase (PAP) followed by the addition of poly-A binding protein.
- This protein along with the enzyme uses ATP as precursor and adds the nucleotides, using the same chemistry as RNA polymerase.
- Before termination, the RNA molecule become very long due to addition of several nucleotides.
- The polymerase along with CPSF & PAP then dissociates from the template, releasing the new RNA, which is degraded without ever leaving the nucleus.
- This involves the termination of RNA, i.e. the mature mRNA is released from polymerase and then transported from the nucleus.



### **RNA POLYMERASE I**

- This enzyme is related to Pol. II, but they initiate transcription from distinct promoters and transcribed distinct genes.
- Pol I is required for the expression of only one gene that encoding the rRNA precursor.
- The promotor of rRNA genes comprises 2 parts: core elements & UCE (upstream control element).
- In addition to Pol. I, initiation requires two other factors, called SL1 & UBF.
- SL1 comprises TBP & three TAFs specific for transcription.
- These complex bound to the UCE in the presence of UBF and stimulates transcription fromcore promoter by recruiting Pol. I.

# TRANSCRIPTION INITIATION BY RNA POLYMERASE I B UCE +20 +1 -45 -100 -150 TBP SL1 UBF care pr



